
G. Zachmann 25 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Application of Brent's Theorem to our Optimization of Prefix-Sum

!  Assume that the optimized version loads f floats into local registers

!  Work complexity:

! Without optimization:

! With optimization:

!  Depth complexity:

! Without optimization:

! With optimization:

!  If f = 2, then W2 = W1 and D2 = D1, i.e., we gain nothing

!  If f > 2, speedup of version 2 (opt.) over version 1 (original):

D1(n) = 2 log(n)

W1(n) = 2n

W2(n) = 2n
f +

n
f ·f = n

�
1 + 2

f

�

D2(n) = 2 log(

n
f) + f = 2 log n � 2 log f + f

Speedup(n) =
T2(n)

T1(n)
=

W1(n)
p + D1(n)

W2(n)
p + D2(n)

⇡
2n
p

n
p

�
1 + 2

f

� =
2f

f + 2

G. Zachmann 26 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Other Consequences of Brent's Theorem

!  Obviously,

!  In the sequential world, time = work:

!  In the parallel world:

!  Our speedup is

!  Assume,

i.e., our parallel algorithm would do asymptotically more work

!  Then,

because, on real hardware, p is bounded

!  This is the reason why we want work-efficient parallel algorithms!

Speedup(n) p

TS(n) = WS(n)

TP(n) =
WP (n)

p + D(n)

WP(n) 2 ⌦(WS(n))

Speedup(n) = TS (n)
TP (n)

= WS (n)
WP (n)

p +D(n)

Speedup(n) =
WS(n)

⌦(WS(n)) + D(n)
! 0 as n ! 1

G. Zachmann 27 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Now, look at work-efficient parallel algorithms, i.e.

!  Then,

!  In this situation, we will achieve the optimal speedup of p,
so long as

!  Consequence: given two work-efficient parallel algorithms, the
one with the smaller depth complexity is better, because we can
run it on hardware with more processors (cores) and still obtain a
speedup of p over the sequential algorithm (in theory).
We say this algorithm scales better.

WP(n) 2 ⇥(WS(n))

Speedup(n) =
W (n)

W (n)
p + D(n)

=
pW (n)

W (n) + pD(n)

p 2 O
�W (n)

D(n)

�

G. Zachmann 28 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Limitations of Brent's Theorem

!  Brent's theorem is based on the PRAM model

!  That model makes a number of unrealistic assumption:

! Memory access has zero latency

! Memory bandwidth is infinite

!  No synchronization among processors (threads) is necessary

!  Arithmetic operations cost unit time

!  With current hardware, rather the opposite is realistic

G. Zachmann 42 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Radix Sort, Based on the Split Operation

!  The split operation: rearrange elements according to a flag

!  Note: split maintains order within each group! (i.e., it is stable)

!  Radix sort (massively parallel):

where split(i,a) rearranges a by moving all keys that have
bit i = 0 to the bottom, all keys that have bit i = 1 to the top
(lowest bit = bit no. 0)

!  Reminder: stability of split is essential!

1 1 1 0 0 0 0 0

0 1 0 0 1 0 0 1

radix_sort(array a, int len):
 for i = 0...numbits-1: // important: go from low to high bit!
 split(i, a) // split a, based on bit i of keys

Flags.
There could be
payload data, too
(omitted here)

G. Zachmann 43 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Algorithm for the Split Operation

!  Split's job:

!  Determine new index for each element

!  Then perform the permutation

!  Algorithm (by way of an example):

!  Consider lowest bit of the keys

1.  Compute "0"-scan (exclusive):
fi = # "0"s in (a0, …, ai-1)

2.  Set F = total number of "0"s

3.  If ai = 0 � new pos. d = fi

4.  If ai = 1 � new pos. d = F + (i – fi)

-  Because i – fi = # "1"s to the left of i

100 111 010 110 001 101 001 000

0 1 2 3 4 5 6 7

a:

i:

=

(
fn�1 + 1 an�1 = 0

fn�1 an�1 = 1

0 1 1 2 3 3 3 3 f:

4+(1-1) 4+(4-3) 4+(5-3) 4+(6-3) dfor "1"s:

0 1 2 3 dfor "0"s:

F=4

0 4 1 2 5 6 7 3 d:

4 7 2 6 1 5 1 0

0 1 2 3 4 5 6 7

a:

i:

4 2 6 0 7 1 5 1 a':

G. Zachmann 44 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  A conceptual algorithm for the "0"-scan:

!  Extract the relevant bit
(conceptually only)

!  Invert the bit

!  Compute regular scan
with +-operation

!  In a real implementation, you would, of course, implement this
as a native "0"-scan routine!

100 111 010 110 001 101 001 000 a:

1 0 1 1 0 0 0 1 a':

0 1 1 2 3 3 3 3 f:

G. Zachmann 45 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Stream Compaction

!  Given: input stream A, and a flag/predicate for each ai

!  Goal: output stream A' that contains only ai's, for which flag = true

!  Example:

!  Given: array of upper and
lower case letters

!  Goal: delete lower case letters
and compact the upper case
to the low-order end of the array

!  Solution:

!  Just like with the split operation, except we don't compute indices for the
"false" elements

!  Frequent task: e.g., collision detection,

!  Sometimes also called list packing, or stream packing

A X C P H W B Z a:

1 0 1 1 0 0 0 1 a':

A C P Z b:

G. Zachmann 48 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Summed-Area Tables / Integral Images

!  Given: 2D array T of size w×h

!  Wanted: a data structure that allows to compute

for any i1, i2, j1, j2 in O(1) time

i2�

k=i1

j2�

l=j1

T (k, l)

i1 i2

j2

j1

G. Zachmann 49 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  The trick:

!  Define

!  With that, we can rewrite the sum:

i2�

k=i1

j2�

l=j1

T (k, l) =
i2�

k=1

j2�

l=1

T (k, l)�
i1�

k=1

j2�

l=1

T (k, l)�
i2�

k=1

j1�

l=1

T (k, l)

+
i1�

k=1

j1�

l=1

T (k, l)

S(i , j) =
i�

k=1

j�

l=1

T (k, l)

i2�

k=i1

j2�

l=j1

T (k, l) = S(i2, j2)� S(i1, j2)� S(i2, j1) + S(i1, j1)

(0,0)

+

+ -

-

Lookups in
Summed Area Table S

G. Zachmann 50 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Definition:
Given a 2D (k-D) array of numbers, T, the summed area table S
stores for each index (i,j) the sum of all elements in the rectangle
(0,0) and (i,j) (inclusively):

!  Like prefix-sum, but for higher dimensions

!  In computer vision, it is often called integral image

!  Example:
Input

 1 1 0 2
 1 2 1 0
 0 1 2 0
 2 1 0 0

 1 2 2 4
 2 5 6 8
 2 6 9 11
 4 9 12 14

Summed Area Table

S(i , j) =
i�

k=1

j�

l=1

T (k, l)

G. Zachmann 51 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  The algorithm: 2 phases (for 2D)
1. Do H prefix-sums horizontally

2. Do W prefix-sums vertically

-  Real implementation (to maintain coalesced memory access):
prefix-sum vertically, transpose, prefix-sum vertically

-  Or use texture memory

!  Depth complexity for k-D (assume w = h, and "native"
horizontal prefix-sum, i.e., no transposition):

!  Caveat: precision of integer/floating-point arithmetic
!  Assumption: each Tij needs b bits

!  Consequence: number of bits needed for Swh =

!  Example: 1024x1024 grey scale input image, each pixel = 8 bits
� 28 bits needed in S-pixels

k ·W logW

logw + log h + b

G. Zachmann 52 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Increasing the Precision

!  The following techniques actually apply to prefix-sums, too!

1. "Signed offset" representation:

!  Set

where

!  Effectively removes DC component from signal

!  Consequence:

i.e., the values of S' are now in the same order as the values of T
(less bits have to be thrown away during the summation)

!  Note 1: we need to set aside 1 bit (sign bit)

!  Note 2: S'(w,h) = 0 (modulo rounding errors)

T 0(i , j) = T (i , j)–t̄

t̄ = average of T =

1
wh

Pw
1

Ph
1 T (i , j)

S 0(i , j) =
iX

k=1

jX

l=1

T 0(k , l) = S(i , j)� i ·j · t̄

G. Zachmann 53 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Example:

input texture original summed-area table this workinput texture original summed-area table this workinput texture original summed-area table this work

Input image Original summed area table
Improved precision

using "offset" representation

G. Zachmann 54 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

2.  Move the "origin" of the i,j "coordinate
frame":

!  Compute 4 different S-tables, one for each
quadrant

!  Result: each S-table comprises only ¼ of the
pixels/values of T

!  For computation of
do a simple case switch

i

j

i

j

i1 i2

j2

j1
i

j
Pi2

k=i1

Pj2
l=j1

T (k , l)

G. Zachmann 55 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Results

!  Compute integral
image

!  From that, compute

!  I.e., 1-pixel box filter

!  Should yield the
original image
(theoretically)

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

Figure 4: The left column shows the original input images, the middle column are reconstructions from summed-area tables
(SATs) generated using our method, and the right column are reconstructions from SATs generated with the old method. For
the first row, the SATs are constructed using 16 bit floats, for the second row the SATs are constructed using 24 bit floats, and
the final row shows a zoomed version of second row (region-of-interest highlighted)

first row shows three versions of a checkerboard. The im-

age on the right, generated using the traditional method, ex-

hibits unacceptable noise throughout much of the image. In

contrast, the middle image, generated by our method, barely

shows error.

Centering around image pixel average. While centering

pixel values around the 50% gray level proved to be quite

useful, an even better approach is to store offsets from the

image’s average pixel value. This is especially true of images

such as Lena for which the image average can be quite differ-

ent from 50% gray. For such images, centering around 50%

gray could still result in sizable magnitudes at each pixel po-

sition, thereby increasing the probability that the summed-

area values could appreciably grow in magnitude. Centering

the pixel values around the actual image average guarantees

that the summed-area value is equal to 0 both at the origin

and at the upper right corner (modulo floating-point round-

ing errors).

c� The Eurographics Association and Blackwell Publishing 2005.

S(i , j)

�S(i � 1, j)

�S(i , j � 1)

+S(i � 1, j � 1)

Simple method With methods 1 & 2

G. Zachmann 56 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Naïve approach: do a 1D prefix-sum per row �
depth complexity (assuming we omit the matrix transposition
step) and work complexity,
where input image has size n×n = N pixels

!  Better solution:

!  Pack all rows into one linear array of size N

!  Do a 1D prefix-sum, but only the first n levels
 � depth complexity

! Work complexity =

!  Is a special
case of
segmented
prefix sum

O
�
N
�

Row 1 Row 2 Row n

n levels
up- and
down-
sweep

Efficient Computation of the Integral Image

O
�p

N logN
�

O
�p

N ·
p
N

�
= O

�
N
�

O
�
logN

�

G. Zachmann 57 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Applications of the Summed Area Table

!  For filtering in general

!  Simple example: box filter

!  Compute average inside a box (= rectangle)

!  Slide box across image (convolution)

!  Application: translucent objects, i.e., transparent & matte

!  E.g., milky glass

1.  Render virtual scene (e.g., game) without translucent objects

2.  Compute summed area table from frame buffer

3.  Render translucent object (using fragment shader): replace pixel
behind translucent object by average over original image within a
(small) box

G. Zachmann 58 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Result:

G. Zachmann 59 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Rendering with Depth-of-Field (Tiefenunschärfe)

1.  Render scene, save color buffer and z-buffer (e.g., in texture)

2.  Compute summed area table over color buffer

3.  For each pixel do in parallel:

1. Read depth of pixel from saved z-buffer

2. Compute circle of confusion (CoC)
(for details see "Advanced CG")

3. Determine size of box filter

4. Compute average over
saved color buffer within box

5. Write in color buffer

!  Note: "For each pixel in parallel"
could be implemented in OpenGL
by rendering a screen-filling quad using special fragment shader

G. Zachmann 60 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Result:

3/8/13 11:34 AMGPU Gems 3 - Chapter 39. Parallel Prefix Sum (Scan) with CUDA

Page 18 of 24http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

the lower-left corner sample, and so on (Crow 1977). We can use this technique for
variable-width filtering, by varying the locations of the four samples we use to com-
pute each filtered output pixel.

Figure 39-12 shows a simple scene rendered with approximate depth of field, so that
objects far from the focal length are blurry, while objects at the focal length are in fo-
cus. In the first pass, we render the teapots and generate a summed-area table in
CUDA from the rendered image using the technique just described. In the second
pass, we render a full-screen quad with a shader that samples the depth buffer from
the first pass and uses the depth to compute a blur factor that modulates the width of
the filter kernel. This determines the locations of the four samples taken from the
summed-area table at each pixel.

Figure 39-12 Approximate Depth of Field Rendered by Using a Summed-Area Table
to Apply a Variable-Size Blur to the Image Based on the Depth of Each Pixel

Rather than write a custom scan algorithm to process RGB images, we decided to use
our existing code along with a few additional simple kernels. Computing the SAT of
an RGB8 input image requires four steps. First we de-interleave the RGB8 image into
three separate floating-point arrays (one for each color channel). Next we scan all
rows of each array in parallel. Then the arrays must be transposed and all rows
scanned again (to scan the columns). This is a total of six scans of width x height ele-
ments each. Finally, the three individual summed-area tables are interleaved into the

G. Zachmann 61 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Artifacts of this Technique

!  False sharp silhouettes: blurry objects (out of focus) have sharp
silhouette, i.e., won't blur over sharp object (in focus)

!  Color bleeding (a.k.a. pixel bleeding): areas in focus can
incorrectly bleed into nearby areas out of focus

!  Reason: the (indiscriminate) gather operation

G. Zachmann 62 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Goal: turn gather operation into scatter operation

!  Example: scatter one pixel using the 2D prefix-sum (integral image)

Depth-of-Field with Scattering

0.2 0.5 0.7 0.5 0.2

0.14 0.14 0.14 0.14 0.14

0.2 0.5 0.7 0.5 0.2

0.42

orig.
image

blurred
image

average gathered over CoC one pixel scattered over CoC

Input image with one pixel set
and its "circle"-of-confusion

 0.9

+0.1 -0.1

 -0.1 +0.1

Pixel value spread to the
corners of the rectangle

0.1

0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

Resulting 2D prefix-sum
= pixel scattered over CoC

G. Zachmann 63 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Algorithm

1.  Phase: for each pixel in original image do in parallel

!  Spread to CoC corners

-  Use atomic accumulation operation !
-  Do this for each R, G, and B channel

2.  Phase: compute 2D prefix-sum,
result = blurred image

!  Question: can you turn phase 1 into a gather phase?

pixel value

area(CoC)

G. Zachmann 64 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Result

Summed area table and gathering Scattering and 2D prefix-sum

[Kosloff, Tao, Barsky, 2009]

G. Zachmann 65 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Recap: Texture Filtering in Case of Minification

!  What happens, when we "zoom
away" from the polygon?

Minification
(texels are small
compared to pixels)

Magnification
(texels are large
compared to pixels)

Texture

u

v

Gabriel Zachmann
Optional

G. Zachmann 66 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Linear interpolation does not help very much:

!  Needed would be an averaging of all texels covered by the pixel
(in uv-space); too costly in real-time

!  Solution: pre-processing � MIP-Maps
(lat. "multum in parvo" = Vieles im Kleinen")

Take texel closest to pixel center (in u,v) Linear interpolation of 4 texels closest to pixel ctr

Gabriel Zachmann
Optional

G. Zachmann 67 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  A MIP-Map is just an image pyramid:

!  Each level is obtained by averaging
2x2 pixels of the level below

-  Consequence: the original image must
have size 2nx2n (at least, in practice)

!  You can use more sophisticated ways
of filtering, e.g., Gaussian

!  Memory usage for MIP-Map: 1.3x
original size

Gabriel Zachmann
Optional

G. Zachmann 69 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Anisotropic Texture Filtering

!  Problem with MIPmapping: doesn't take the
"shape" of the pixel in texture space into account!

! MIPmapping just puts a square box around
the pixel in texture space and averages
all texels within

!  Solution: average over bounding rectangle

!  Use Summed Area Table for quick summation

!  Question: how to average over highly "oblique" pixels?

Mip Maps
• Keep textures prefiltered at multiple resolutions
o For each pixel, use the mip-map closest level
o Fast, easy for hardware

• This type of filtering is isotropic:
o It doesnʼt take into account that there is more

compression in the vertical direction than in the
horizontal one

Again: we’re trading aliasing for blurring!
s

t

Mip Maps
• Keep textures prefiltered at multiple resolutions

o For each pixel, use the mip-map closest level
o Fast, easy for hardware

• This type of filtering is isotropic:
o It doesnʼt take into account that there is more

compression in the vertical direction than in the
horizontal one

Again: we’re trading aliasing for blurring!
s

t

Mip Maps
• Keep textures prefiltered at multiple resolutions
o For each pixel, use the mip-map closest level
o Fast, easy for hardware

• This type of filtering is isotropic:
o It doesnʼt take into account that there is more

compression in the vertical direction than in the
horizontal one

Again: we’re trading aliasing for blurring!
s

t

Gabriel Zachmann
Optional

G. Zachmann 70 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  This is one kind of anisotropic texture filtering

!  Result:

No filtering

Mipmapping

Summed area table

Gabriel Zachmann
Optional

G. Zachmann 71 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Another example:

!  Today: all graphics cards support anisotropic filtering (not
necessarily using SATs)

Mipmapping Anisotropic

Gabriel Zachmann
Optional

G. Zachmann 72 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Application: Face Detection

!  Goal: detect faces in images

!  Requirements (wishes):

!  Real-time or close (> 2 frames/sec)

!  Robust (high true-positive rate, low false-positive rate)

!  Non-goal: face recognition

!  In the following: no details, just overview!

digital camera iPhoto "False positive" from
human point of view

G. Zachmann 73 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  The term feature in computer vision:

!  Can be literally any piece of information/structure present in an image
(somehow)

!  Binary features � present / not present;
examples:

-  Edges (e.g., gradient > threshold)

-  Color of pixels is within specific range (e.g., skin)

-  Ellipse filled with certain amount of skin color pixels

!  Non-binary features � probability of occurrence;
examples:

-  Gradient image

-  Sum of pixel values within a shape, e.g., rectangle

G. Zachmann 74 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

The Viola-Jones Face Detector [2002]

!  The (simple) idea:

! Move sliding window across image
(all possible locations, all possible sizes)

!  Check, whether a face is in the window

! We are interested only in windows
that are filled by a face

!  Observation:

!  Image contains 10's of faces

!  But ~106 candidate windows

!  Consequence:

!  To avoid having a false positive in every image,
our false positive rate has to be < 10-6

G. Zachmann 75 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Feature types used in the Viola-Jones face detector:

!  2, 3, or 4 rectangles placed next to each other

!  Called Haar features

!  Feature value := gi =
pixel-sum(white rectangle(s)) –
pixel-sum(black rectangle(s))

!  Constant time
per feature extraction

!  In a 24x24 window, there are
~160,000 possible features

-  All variations of type, size, location within window

6 reads from the
integral image

8 reads from the
integral image

G. Zachmann 76 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Define a weak classifier for each feature:

!  "Weak" because such a classifier is only
slightly better than a random "classifier"

!  Goal: combine lots of weak classifiers to form one strong classifier

f1 f2

fi =

(
+1 , gi > ✓i
�1 , else

F (window) = ↵1f1 + ↵2f2 + . . .

G. Zachmann 77 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Use learning algorithms to automatically find a set of weak
classifiers and their optimal weights and thresholds, which
together form a strong classifier (e.g., AdaBoost)
! More on that in AI & machine learning courses

!  Training data:
!  Ca. 5000 hand labeled faces

-  Many variations (illumination, pose, skin color, …)

!  10000 non-faces

!  Faces are normalized (scale, translation)

!  First weak classifiers with largest weights
are meaningful and have high
discriminative power:
!  Eyes region is darker than the upper-cheeks

!  Nose bridge region is brighter than the eyes

G. Zachmann 78 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Arrange in a filter cascade:

!  Classifier with highest weight comes first

-  Or small sets of weak classifiers in one stage

!  If window fails one stage in cascade
� discard window

-  Advantage: "early exit" if "clearly" non-face

!  Typical detector has 38 stages in the cascade,
~6000 features

!  Effect: more features �
less false positives

!  Typical visualization:
Receiver operating
characteristic (ROC curve)

Stage 1

Stage 2

Stage K

No

Maybe

Maybe

Almost certainly

vs false neg determined by
% False Positives

%
 T

ru
e

Po
si

tiv
es
 0 50

0

 1
00

No

No

G. Zachmann 79 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

!  Final stage: only report face, if cascade
finds several nearby face windows

!  Discard "lonesome" windows

G. Zachmann 80 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Visualization of the Algorithm

Adam Harv
(http://vimeo.com/12774628)

G. Zachmann 81 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

Final remarks on Viola-Jones

!  Pros:

!  Extremely fast feature computation

!  Scale and location invariant detector

-  Instead of scaling the image itself (e.g. pyramid-filters), we scale the features

! Works also for some other types of objects

!  Cons:

!  Doesn't work very well for 45˚ views on faces

!  Not rotation invariant

G. Zachmann 82 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS

