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Application of Brent's Theorem to our Optimization of Prefix-Sum 

!  Assume that the optimized version loads f  floats into local registers 

!  Work complexity: 

! Without optimization: 

! With optimization:  

!  Depth complexity: 

! Without optimization:  

! With optimization: 

!  If f = 2, then W2 = W1 and D2 = D1, i.e., we gain nothing 

!  If f > 2, speedup of version 2 (opt.) over version 1 (original): 

D1(n) = 2 log(n)

W1(n) = 2n

W2(n) = 2n
f +

n
f ·f = n

�
1 + 2

f

�

D2(n) = 2 log(

n
f ) + f = 2 log n � 2 log f + f

Speedup(n) =
T2(n)

T1(n)
=

W1(n)
p + D1(n)

W2(n)
p + D2(n)

⇡
2n
p

n
p

�
1 + 2

f

� =
2f

f + 2
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Other Consequences of Brent's Theorem 

!  Obviously,  

!  In the sequential world, time = work:  

!  In the parallel world: 

!  Our speedup is  

!  Assume,  

i.e., our parallel algorithm would do asymptotically more work 

!  Then,  

because, on real hardware,  p  is bounded 

!  This is the reason why we want work-efficient parallel algorithms! 

Speedup(n)  p

TS(n) = WS(n)

TP(n) =
WP (n)

p + D(n)

WP(n) 2 ⌦(WS(n) )

Speedup(n) = TS (n)
TP (n)

= WS (n)
WP (n)

p +D(n)

Speedup(n) =
WS(n)

⌦(WS(n) ) + D(n)
! 0 as n ! 1
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!  Now, look at work-efficient parallel algorithms, i.e. 

!  Then, 

!  In this situation, we will achieve the optimal speedup of p, 
so long as 

!  Consequence: given two work-efficient parallel algorithms, the 
one with the smaller depth complexity is better, because we can 
run it on hardware with more processors (cores) and still obtain a 
speedup of p over the sequential algorithm (in theory). 
We say this algorithm scales better. 

WP(n) 2 ⇥(WS(n) )

Speedup(n) =
W (n)

W (n)
p + D(n)

=
pW (n)

W (n) + pD(n)

p 2 O
�W (n)

D(n)

�
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Limitations of Brent's Theorem 

!  Brent's theorem is based on the PRAM model 

!  That model makes a number of unrealistic assumption: 

! Memory access has zero latency 

! Memory bandwidth is infinite 

!  No synchronization among processors (threads) is necessary 

!  Arithmetic operations cost unit time 

!  With current hardware, rather the opposite is realistic 
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Radix Sort, Based on the Split Operation 

!  The split operation: rearrange elements according to a flag 

!  Note: split maintains order within each group! (i.e., it is stable) 

!  Radix sort (massively parallel): 
 
 
 
where split(i,a) rearranges a by moving all keys that have 
bit i = 0 to the bottom, all keys that have bit i = 1 to the top 
(lowest bit = bit no. 0) 

!  Reminder: stability of split  is essential! 

1 1 1 0 0 0 0 0 

0 1 0 0 1 0 0 1 

radix_sort( array a, int len ): 
  for i = 0...numbits-1:  // important: go from low to high bit! 
    split(i, a)           // split a, based on bit i of keys 

Flags. 
There could be  
payload data, too 
(omitted here) 
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Algorithm for the Split Operation 

!  Split's job: 

!  Determine new index for each element 

!  Then perform the permutation 

!  Algorithm (by way of an example): 

!  Consider lowest bit of the keys 

1.  Compute "0"-scan (exclusive): 
fi = # "0"s in (a0, …, ai-1) 

2.  Set F = total number of "0"s 

3.  If ai = 0 � new pos. d = fi 

4.  If ai = 1 � new pos. d = F + (i – fi) 

-  Because  i – fi = # "1"s to the left of i 

100 111 010 110 001 101 001 000 

0 1 2 3 4 5 6 7 

a: 

i: 

=

(
fn�1 + 1 an�1 = 0

fn�1 an�1 = 1

0 1 1 2 3 3 3 3 f: 

4+(1-1) 4+(4-3) 4+(5-3) 4+(6-3) dfor "1"s: 

0 1 2 3 dfor "0"s: 

F=4 

0 4 1 2 5 6 7 3 d: 

4 7 2 6 1 5 1 0 

0 1 2 3 4 5 6 7 

a: 

i: 

4 2 6 0 7 1 5 1 a': 
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!  A conceptual algorithm for the "0"-scan: 

!  Extract the relevant bit  
(conceptually only) 

!  Invert the bit  

!  Compute regular scan  
with +-operation 

!  In a real implementation, you would, of course, implement this 
as a native "0"-scan routine! 

100 111 010 110 001 101 001 000 a: 

1 0 1 1 0 0 0 1 a': 

0 1 1 2 3 3 3 3 f: 
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Stream Compaction 

!  Given: input stream A, and a flag/predicate for each ai 

!  Goal: output stream A' that contains only ai's, for which flag = true 

!  Example: 

!  Given: array of upper and  
lower case letters 

!  Goal: delete lower case letters  
and compact the upper case  
to the low-order end of the array 

!  Solution: 

!  Just like with the split operation, except we don't compute indices for the 
"false" elements 

!  Frequent task: e.g., collision detection,  

!  Sometimes also called list packing, or stream packing 

A X C P H W B Z a: 

1 0 1 1 0 0 0 1 a': 

A C P Z b: 
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Summed-Area Tables / Integral Images 

!  Given: 2D array T of size w×h 

!  Wanted: a data structure that allows to compute  
 

 
for any  i1, i2, j1, j2  in O(1) time 

i2�

k=i1

j2�

l=j1

T (k, l)

i1 i2 

j2 

j1 
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!  The trick: 

!  Define 

!  With that, we can rewrite the sum: 

i2�

k=i1

j2�

l=j1

T (k, l) =
i2�

k=1

j2�

l=1

T (k, l)�
i1�

k=1

j2�

l=1

T (k, l)�
i2�

k=1

j1�

l=1

T (k, l)

+
i1�

k=1

j1�

l=1

T (k, l)

S(i , j) =
i�

k=1

j�

l=1

T (k, l)

i2�

k=i1

j2�

l=j1

T (k, l) = S(i2, j2)� S(i1, j2)� S(i2, j1) + S(i1, j1)

(0,0) 

+ 

+ - 

- 

Lookups in 
Summed Area Table S 
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!  Definition: 
Given a 2D (k-D) array of numbers, T, the summed area table S 
stores for each index (i,j) the sum of all elements in the rectangle 
(0,0) and (i,j) (inclusively): 

!  Like prefix-sum, but for higher dimensions 

!  In computer vision, it is often called integral image 

!  Example: 
Input 

 1  1  0  2 
 1  2  1  0 
 0  1  2  0 
 2  1  0  0 

 1  2  2  4 
 2  5  6  8 
 2  6  9 11 
 4  9 12 14 

Summed Area Table 

S(i , j) =
i�

k=1

j�

l=1

T (k, l)



G. Zachmann 51 Prefix-Sum Massively Parallel Algorithms 26 June 2014 SS 

!  The algorithm: 2 phases (for 2D) 
1. Do H prefix-sums horizontally 

2. Do W prefix-sums vertically 

-  Real implementation (to maintain coalesced memory access):  
prefix-sum vertically, transpose, prefix-sum vertically 

-  Or use texture memory 

!  Depth complexity for k-D (assume w = h, and "native"  
horizontal prefix-sum, i.e., no transposition): 

!  Caveat: precision of integer/floating-point arithmetic 
!  Assumption: each Tij needs  b  bits 

!  Consequence: number of bits needed for Swh =  

!  Example: 1024x1024 grey scale input image, each pixel = 8 bits 
� 28 bits needed in S-pixels 

k ·W logW

logw + log h + b
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Increasing the Precision 

!  The following techniques actually apply to prefix-sums, too! 

1. "Signed offset" representation: 

!  Set  
 
 

where 

!  Effectively removes DC component from signal 

!  Consequence: 

 
 
i.e., the values of S' are now in the same order as the values of T 
(less bits have to be thrown away during the summation) 

!  Note 1: we need to set aside 1 bit (sign bit) 

!  Note 2: S'(w,h) = 0  (modulo rounding errors) 

T 0(i , j) = T (i , j)–t̄

t̄ = average of T =

1
wh

Pw
1

Ph
1 T (i , j)

S 0(i , j) =
iX

k=1

jX

l=1

T 0(k , l) = S(i , j)� i ·j · t̄
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!  Example: 

input texture original summed-area table this workinput texture original summed-area table this workinput texture original summed-area table this work

Input image Original summed area table 
Improved precision 

using "offset" representation 
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2.  Move the "origin" of the i,j "coordinate 
frame": 

!  Compute 4 different S-tables, one for each 
quadrant 

!  Result: each S-table comprises only ¼ of the 
pixels/values of T 

!  For computation of  
do a simple case switch 

i 

j 

i 

j 

i1 i2 

j2 

j1 
i 

j 
Pi2

k=i1

Pj2
l=j1

T (k , l)
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Results 

!  Compute integral 
image 

!  From that, compute  

!  I.e., 1-pixel box filter 

!  Should yield the  
original image 
(theoretically) 

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

Figure 4: The left column shows the original input images, the middle column are reconstructions from summed-area tables
(SATs) generated using our method, and the right column are reconstructions from SATs generated with the old method. For
the first row, the SATs are constructed using 16 bit floats, for the second row the SATs are constructed using 24 bit floats, and
the final row shows a zoomed version of second row (region-of-interest highlighted)

first row shows three versions of a checkerboard. The im-

age on the right, generated using the traditional method, ex-

hibits unacceptable noise throughout much of the image. In

contrast, the middle image, generated by our method, barely

shows error.

Centering around image pixel average. While centering

pixel values around the 50% gray level proved to be quite

useful, an even better approach is to store offsets from the

image’s average pixel value. This is especially true of images

such as Lena for which the image average can be quite differ-

ent from 50% gray. For such images, centering around 50%

gray could still result in sizable magnitudes at each pixel po-

sition, thereby increasing the probability that the summed-

area values could appreciably grow in magnitude. Centering

the pixel values around the actual image average guarantees

that the summed-area value is equal to 0 both at the origin

and at the upper right corner (modulo floating-point round-

ing errors).

c� The Eurographics Association and Blackwell Publishing 2005.

S(i , j)

�S(i � 1, j)

�S(i , j � 1)

+S(i � 1, j � 1)

Simple method With methods 1 & 2 
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!  Naïve approach: do a 1D prefix-sum per row �  
depth complexity (assuming we omit the matrix transposition 
step) and                                         work complexity, 
where input image has size n×n = N pixels 

!  Better solution: 

!  Pack all rows into one linear array of size N 

!  Do a 1D prefix-sum, but only the first n levels 
 �                    depth complexity  

! Work complexity =  

!  Is a special 
case of  
segmented  
prefix sum 

O
�
N
�

Row 1 Row 2 Row n 

n levels 
up- and 
down- 
sweep 

Efficient Computation of the Integral Image 

O
�p

N logN
�

O
�p

N ·
p
N

�
= O

�
N
�

O
�
logN

�
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Applications of the Summed Area Table 

!  For filtering in general 

!  Simple example: box filter  

!  Compute average inside a box (= rectangle) 

!  Slide box across image (convolution) 

!  Application: translucent objects, i.e., transparent & matte 

!  E.g., milky glass 

1.  Render virtual scene (e.g., game) without translucent objects 

2.  Compute summed area table from frame buffer 

3.  Render translucent object (using fragment shader): replace pixel 
behind translucent object by average over original image within a 
(small) box  
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!  Result: 
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Rendering with Depth-of-Field (Tiefenunschärfe) 

1.  Render scene, save color buffer and z-buffer (e.g., in texture) 

2.  Compute summed area table over color buffer 

3.  For each pixel do in parallel: 

1. Read depth of pixel from saved z-buffer 

2. Compute circle of confusion (CoC)  
(for details see "Advanced CG") 

3. Determine size of box filter 

4. Compute average over  
saved color buffer within box 

5. Write in color buffer 

!  Note: "For each pixel in parallel" 
could be implemented in OpenGL 
by rendering a screen-filling quad using special fragment shader 
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!  Result: 

3/8/13 11:34 AMGPU Gems 3 - Chapter 39. Parallel Prefix Sum (Scan) with CUDA

Page 18 of 24http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

the lower-left corner sample, and so on (Crow 1977). We can use this technique for
variable-width filtering, by varying the locations of the four samples we use to com-
pute each filtered output pixel.

Figure 39-12 shows a simple scene rendered with approximate depth of field, so that
objects far from the focal length are blurry, while objects at the focal length are in fo-
cus. In the first pass, we render the teapots and generate a summed-area table in
CUDA from the rendered image using the technique just described. In the second
pass, we render a full-screen quad with a shader that samples the depth buffer from
the first pass and uses the depth to compute a blur factor that modulates the width of
the filter kernel. This determines the locations of the four samples taken from the
summed-area table at each pixel.

Figure 39-12 Approximate Depth of Field Rendered by Using a Summed-Area Table
to Apply a Variable-Size Blur to the Image Based on the Depth of Each Pixel

Rather than write a custom scan algorithm to process RGB images, we decided to use
our existing code along with a few additional simple kernels. Computing the SAT of
an RGB8 input image requires four steps. First we de-interleave the RGB8 image into
three separate floating-point arrays (one for each color channel). Next we scan all
rows of each array in parallel. Then the arrays must be transposed and all rows
scanned again (to scan the columns). This is a total of six scans of width x height ele-
ments each. Finally, the three individual summed-area tables are interleaved into the
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Artifacts of this Technique 

!  False sharp silhouettes: blurry objects (out of focus) have sharp 
silhouette, i.e., won't blur over sharp object (in focus) 

!  Color bleeding (a.k.a. pixel bleeding): areas in focus can 
incorrectly bleed into nearby areas out of focus 

!  Reason: the (indiscriminate) gather operation 
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!  Goal: turn gather operation into scatter operation 

!  Example: scatter one pixel using the 2D prefix-sum (integral image) 

Depth-of-Field with Scattering 

0.2 0.5 0.7 0.5 0.2 

0.14 0.14 0.14 0.14 0.14 

0.2 0.5 0.7 0.5 0.2 

    

0.42 

orig.  
image 

blurred  
image 

average gathered over CoC one pixel scattered over CoC 

Input image with one pixel set  
and its "circle"-of-confusion 
    

    0.9 

  
    

+0.1 -0.1 

    

    

  
  -0.1 +0.1 

Pixel value spread to the  
corners of the rectangle 

0.1 

    

  

  
    

0.1 0.1 

0.1 0.1 0.1 

0.1 0.1 0.1 

Resulting 2D prefix-sum 
= pixel scattered over CoC 
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Algorithm 

1.  Phase: for each pixel in original image do in parallel 

!  Spread                   to CoC corners 

-  Use atomic accumulation operation ! 
-  Do this for each R, G, and B channel 

2.  Phase: compute 2D prefix-sum,  
result = blurred image 

!  Question: can you turn phase 1 into a gather phase? 

pixel value

area(CoC)
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Result 

Summed area table and gathering Scattering and 2D prefix-sum 

[Kosloff, Tao, Barsky, 2009] 
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Recap: Texture Filtering in Case of Minification 

!  What happens, when we "zoom 
away" from the polygon? 

Minification 
(texels are small  
compared to pixels) 

Magnification 
(texels are large 
compared to pixels) 

Texture 

u 

v 

Gabriel Zachmann
Optional
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!  Linear interpolation does not help very much: 

!  Needed would be an averaging of all texels covered by the pixel 
(in uv-space); too costly in real-time 

!  Solution: pre-processing � MIP-Maps  
(lat. "multum in parvo" = Vieles im Kleinen") 

Take texel closest to pixel center (in u,v) Linear interpolation of 4 texels closest to pixel ctr 

Gabriel Zachmann
Optional
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!  A MIP-Map is just an image pyramid: 

!  Each level is obtained by averaging 
2x2 pixels of the level below 

-  Consequence: the original image must 
have size 2nx2n   (at least, in practice) 

!  You can use more sophisticated ways 
of filtering, e.g., Gaussian 

!  Memory usage for MIP-Map: 1.3x 
original size 

Gabriel Zachmann
Optional
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Anisotropic Texture Filtering 

!  Problem with MIPmapping: doesn't take the  
"shape" of the pixel in texture space into account! 

! MIPmapping just puts a square box around  
the pixel in texture space and averages  
all texels within 

!  Solution: average over bounding rectangle 

!  Use Summed Area Table for quick summation 

!  Question: how to average over highly "oblique" pixels? 

Mip Maps
• Keep textures prefiltered at multiple resolutions
o For each pixel, use the mip-map closest level 
o Fast, easy for hardware

• This type of filtering is isotropic:
o It doesnʼt take into account that there is more 

compression in the vertical direction than in the 
horizontal one

Again: we’re trading aliasing for blurring!
s

t

Mip Maps
• Keep textures prefiltered at multiple resolutions

o For each pixel, use the mip-map closest level 
o Fast, easy for hardware

• This type of filtering is isotropic:
o It doesnʼt take into account that there is more 

compression in the vertical direction than in the 
horizontal one

Again: we’re trading aliasing for blurring!
s

t

Mip Maps
• Keep textures prefiltered at multiple resolutions
o For each pixel, use the mip-map closest level 
o Fast, easy for hardware

• This type of filtering is isotropic:
o It doesnʼt take into account that there is more 

compression in the vertical direction than in the 
horizontal one

Again: we’re trading aliasing for blurring!
s

t

Gabriel Zachmann
Optional
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!  This is one kind of anisotropic texture filtering 

!  Result: 

No filtering  
 
 
 
 
Mipmapping 
 
 
 
 
 
Summed area table 

Gabriel Zachmann
Optional
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!  Another example: 

!  Today: all graphics cards support anisotropic filtering (not 
necessarily using SATs) 

Mipmapping Anisotropic 

Gabriel Zachmann
Optional
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Application: Face Detection 

!  Goal: detect faces in images 

!  Requirements (wishes): 

!  Real-time or close (> 2 frames/sec) 

!  Robust (high true-positive rate, low false-positive rate) 

!  Non-goal: face recognition 

!  In the following: no details, just overview! 

digital camera iPhoto "False positive" from  
human point of view 
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!  The term feature in computer vision: 

!  Can be literally any piece of information/structure present in an image 
(somehow) 

!  Binary features � present / not present;  
examples: 

-  Edges (e.g., gradient > threshold) 

-  Color of pixels is within specific range (e.g., skin) 

-  Ellipse filled with certain amount of skin color pixels 

!  Non-binary features � probability of occurrence; 
examples: 

-  Gradient image 

-  Sum of pixel values within a shape, e.g., rectangle 
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The Viola-Jones Face Detector                                     [2002] 

!  The (simple) idea: 

! Move sliding window across image  
(all possible locations, all possible sizes) 

!  Check, whether a face is in the window 

! We are interested only in windows  
that are filled by a face 

!  Observation: 

!  Image contains 10's of faces 

!  But ~106 candidate windows 

!  Consequence: 

!  To avoid having a false positive in every image,  
our false positive rate has to be < 10-6 
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!  Feature types used in the Viola-Jones face detector: 

!  2, 3, or 4 rectangles placed next to each other 

!  Called Haar features 

!  Feature value := gi =  
pixel-sum( white rectangle(s) ) –  
pixel-sum( black rectangle(s) ) 

!  Constant time  
per feature extraction 

!  In a 24x24 window, there are  
~160,000 possible features 

-  All variations of type, size, location within window 

6 reads from the  
integral image 

8 reads from the  
integral image 
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!  Define a weak classifier for each feature: 

!  "Weak" because such a classifier is only  
slightly better than a random "classifier" 

!  Goal: combine lots of weak classifiers to form one strong classifier 

f1 f2 

fi =

(
+1 , gi > ✓i
�1 , else

F (window) = ↵1f1 + ↵2f2 + . . .
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!  Use learning algorithms to automatically find a set of weak 
classifiers and their optimal weights and thresholds, which 
together form a strong classifier (e.g., AdaBoost) 
! More on that in AI & machine learning courses 

!  Training data: 
!  Ca. 5000 hand labeled faces 

-  Many variations (illumination, pose, skin color, …) 

!  10000 non-faces 

!  Faces are normalized (scale, translation) 

!  First weak classifiers with largest weights  
are meaningful and have high  
discriminative power: 
!  Eyes region is darker than the upper-cheeks 

!  Nose bridge region is brighter than the eyes 
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!  Arrange in a filter cascade: 

!  Classifier with highest weight comes first 

-  Or small sets of weak classifiers in one stage 

!  If window fails one stage in cascade  
� discard window 

-  Advantage: "early exit" if "clearly" non-face 

!  Typical detector has 38 stages in the cascade,  
~6000 features 

!  Effect: more features �  
less false positives 

!  Typical visualization:  
Receiver operating  
characteristic (ROC curve) 

Stage 1 

Stage 2 

Stage K 

No 

Maybe 

Maybe 

Almost certainly 

vs  false  neg  determined by 
% False Positives 

%
 T

ru
e 

Po
si

tiv
es
 0                                               50 

0 
   

   
   

   
   

   
   

   
   

  1
00
 

No 

No 
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!  Final stage: only report face, if cascade  
finds several nearby face windows 

!  Discard "lonesome" windows 
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Visualization of the Algorithm 

Adam Harv  
(http://vimeo.com/12774628) 
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Final remarks on Viola-Jones 

!  Pros: 

!  Extremely fast feature computation 

!  Scale and location invariant detector 

-  Instead of scaling the image itself (e.g. pyramid-filters), we scale the features 

! Works also for some other types of objects 

!  Cons: 

!  Doesn't work very well for 45˚ views on faces 

!  Not rotation invariant 
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